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Abstract—Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many 
fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its 
contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to 
solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper 
mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, 
and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications 
are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying 
differentially expressed genes and clustering samples. 

Index Terms—Constrained optimization, Gene expression, Multivariate statistics, Non-negative matrix factorization, Pattern 
clustering 

——————————      —————————— 

1 INTRODUCTION
ITH the rapid development of sequencing technolo-
gies, a large amount of biological information has 

been stored in the gene expression data. It is important to 
analyze these data to identify the useful information. Un-
der this background and trend, data mining and machine 
learning have received a large amount of attention. Di-
mensionality reduction is an effective representation me-
thod. Traditional methods in dimensionality reduction, 
such as Principal Component Analysis (PCA) [1], present 
some basis vectors that can be used to approximate the 
original high-dimensional data. Linear Discriminant 
Analysis (LDA), which is also called Fisher Linear Dis-
criminant (FLD), is a supervised dimensionality reduction 

method [2]. Locally Linear Embedding (LLE) [3] and Su-
pervised Locally Linear Embedding (SLLE) are non-linear 
dimensionality reduction methods [4]. Independent 
Component Analysis (ICA) [5] is a useful extension of 
PCA, which has been developed in the context of the 
blind separation of independent sources from their linear 
mixtures [6]. Partial Least Squares (PLS) regression is a 
technique that combines features from generalized PCA 
and multiple linear regression [7]. A highlighted problem 
with these algorithms is that there are no constraints on 
the signs of the elements in the factor matrices. Thus, the 
basis vectors may have both positive and negative com-
ponents that cannot be reasonably interpreted because the 
negative components contradict physical realities. In the 
real world, many data are always non-negative, for ex-
ample, gene expression data, image pixel values, chemical 
compound concentration, and signal intensities. Thus, 
Non-negative Matrix Factorization (NMF) has also been 
introduced as a dimensionality reduction method. When 
the observation data are placed in the columns in a matrix 
with non-negative elements, NMF seeks to identify a 
lower rank matrix, the elements of which are also non-
negative, to approximate the data matrix. The non-
negativity allows the intuitive interpretation as the real 
understanding of the original data. 

Because of the outstanding interpretability that is poss-
ible with non-negativity, NMF has been extensively stu-
died in bioinformatics. For example, Kim et al. used 
sparse NMF for microarray data analysis [8]. Brunet et al. 
applied NMF to cancer microarray data to elucidate tu-
mor subtypes [9]. Devarajan et al. used NMF as an analyt-
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ical and interpretive tool in computational biology [10]. 
Devarajan and Ebrahimi successfully applied NMF as a 
tool for dimensionality reduction and visualization as 
well as in kinetic expression profiling to analyze microar-
ray data [11]. Dueck et al. analyzed multi-way clustering 
of microarray data using sparse methods [12]. Pascual-
Montano et al. provided an analytical tool called bio-NMF 
for simultaneous clustering of genes and samples [13]. 
Carmona-Saez et al. used NMF to bicluster gene expres-
sion data [14]. Kim and Tidor applied NMF as a tool to 
cluster genes and predict functional cellular relationships 
in yeast using gene expression data [15], whereas Heger 
and Holm applied it to the recognition of sequence pat-
terns among related proteins [16]. Frigyesi et al. used 
NMF to identify clinically relevant tumor subtypes [17]. 
Numerous contributions have been made to the machine 
learning and bioinformatics fields by NMF research.  

In past years, numerous genomics and proteomics data 
were presented for biological and biomedical investiga-
tion [18]. Concurrently, the identification of differentially 
expressed genes and clustering samples have become 
prevalent technologies due to the advances in bioinfor-
matics. As an increasing number of applications are ex-
ploited [19-21], gene expression data analysis has become 
an effective measure for disease diagnosis and treatment, 
particularly for tumor research. Moreover, to understand 
the mechanism of cancer cell development, NMF also has 
been applied to analyze the TCGA (The Cancer Genome 
Atlas) data [22]. 

It is well-known that a tumor is a neoplasm or solid le-
sion that is formed by an abnormal growth of cells. Relia-
ble and precise clustering and identification of the morbi-
genous genes are essential for effective treatment of tu-
mors. Gene expression data typically contain thousands 
of genes on each chip (a sample), and the number of sam-
ples is much smaller than that of genes, so it is a typical 
small-sample-size problem [23], i.e., the number of pre-
dictor variables m  is much greater than that of the avail-
able samples n . The particular condition >>m n  makes 
it difficult to most of the standard statistical methods  
from both analytical and interpretative perspectives. For 
example, including too many variables may decrease the 

accuracy for the identification of features and clustering 
samples, making the cluster rules difficult to establish. 
The inclusion of irrelevant or noise variables may also 
degrade the identifying and clustering performance [24]. 
Thus, NMF algorithms have been used to analyze gene 
expression data by incorporating the non-negative con-
straint and thus obtaining the part-based representation 
as well as correspondingly enhancing the interpretability 
of the issue. Therefore, a survey is necessary and indis-
pensable. In this paper, we provide an outline of the de-
velopment of NMF for gene expression analysis and the 
updated or the comprehensive results [25]. In this paper, 
we focus on the applications of NMF for identifying diffe-
rential genes and clustering samples, which differs from 
other published surveys [26-28]. Furthermore, real data 
were applied to demonstrate the performance of NMF 
algorithms. Available NMF methods are divided into 
three categories, as detailed in Figure 1, which provides a 
description of the hierarchical structure of NMF methods 
used in this paper. The first part is sparse NMF, which 
contains methods with sparse constraints: 0L -norm-based 
NMF, 1L -norm-based NMF, 2,1L -norm-based NMF and 
Versatile SNMF. The second part is Graph NMF, which 
contains methods with graph regularized constraints: 
Graph regularized NMF (GNMF), Robust Manifold NMF 
(RMNMF), Robust NMF via joint Sparse and Graph regu-
larization model (RSGNMF) and Graph regularized Dis-
criminative NMF (GDNMF). The third part introduces 
some generalized NMF methods such as Semi-NMF and 
Orthogonal NMF (Orth-NMF). Among them, the codes 
for NMF 21L , RMNMF and RSGNMF were written by our 
group, and the others are the original existing codes. 

The rest of the paper is organized as follows: Section 2 
introduces the formulation of basic NMF and efficient 
algorithms. Section 3 presents the sparse NMF with many 
different constraints. Models of graph regularized NMF 
are introduced in Section 4. Section 5 briefly presents oth-
er relevant NMF methods. Section 6 describes the results 
of these algorithms in gene expression data and the 
TCGA dataset. The conclusions are provided in Section 7. 

 
Fig. 1. The hierarchical structure of NMF methods in this paper. The first part is sparse NMF which contains methods with sparse constraint  
such as 0L -norm-based NMF, 1L -norm-based NMF, 2,1L -norm-based NMF and Versatile SNMF. The second part is Graph NMF, which 
contains methods with graph regularized constraints: Graph regularized NMF (GNMF), Robust Manifold NMF (RMNMF), Robust NMF via 
joint Sparse and Graph regularization model (RSGNMF) and Graph regularized Discriminative NMF (GDNMF). The third part introduces 
some generalized NMF methods such as Semi-NMF and Orthogonal NMF (Orth-NMF). 
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2 BASIC NMF 
In this section, we provide a summary of the basic NMF 
method, with a particular emphasis on the meaning of 
gene expression analysis and mathematical descriptions. 

NMF can be traced back to the 1970s (notes from Go-
lub and Reinsch) [29] and was further studied by Paatero 
[30]. The work of Lee and Seung [31, 32] has brought 
much attention to NMF in the data mining and machine 
learning fields. NMF has been used to tackle many NP-
hard problems [33-35]. Algorithmic extensions of NMF 
have been developed to accommodate a variety of objec-
tive functions [36] and a variety of data analysis problems. 
Many studies have focused on further developing compu-
tational methodologies for NMF. The true power of NMF, 
however, is its ability to solve challenging pattern recog-
nition and data mining problems [27]. For example, Bru-
net et al. interpreted the gene expression pattern as meta-
genes that captured gene expression patterns specific to 
different groups of samples and demonstrated that NMF 
was more accurate than hierarchical clustering (HC) and 
more stable than self-organizing maps (SOMs) [9].  

NMF is a matrix factorization method that focuses on 
the analysis of data matrices with factors that are non-
negative. Gene expression data are typically presented as 
a matrix in which the rows correspond to expression le-
vels of genes and the columns correspond to samples, and 
each entry corresponds to the expression level of a given 
gene in a given sample. 

Given a matrix ×= ∈1 2( , ,..., ) m n
n RX x x x  with size ×m n , 

its rows contain the expression levels of m  genes in the 
n  samples. Without loss of generality, with non-negative 
elements in X , NMF seeks to decompose X  into a non-
negative coefficient matrix ×= ∈1 2( , ,..., ) r n

n RY y y y  and 
non-negative basis matrix ×∈（ ）1 2= , , , T m r

ma a a RA , such 
that ≈X AY ,  where A  has size  ×m r , with each of the 
m  rows defining a metagene, and Y  has size ×r n , with 
each of  the r  rows representing the metapattern of the 
corresponding sample. This definition states that each 
column of X  is approximated by a non-negative linear 
combination of the columns of A , where the coefficients 
are given by the corresponding column of Y  [37]. 

The error function of the basic NMF is 

=
− = − > >∑

22

1
, . .  ,  .n

j jjF
s tX AY x Ay Y 0 A 0  (1)  

There are two commonly used error functions that 
quantify the quality of the approximation. The first one is 
the square of the Euclidean distance between two matric-
es [30]: 

( )=
− = −∑ ∑

22

1 1
,

= .r
ij ik kjk

i j
f x a yX AY  (2) 

The second one is the Kullback-Leibler divergence be-
tween two matrices [32] : 

 
− +  

 
∑（ || ）=2

,
= log ,ij

ij ij ij
i j ij

x
f D x x v

v
X AY   (3) 

where = =[ ]ijvV AY . In this paper, we refer to  1f  and 

2f  as F-norm and divergence formulations, respectively. 
Lee and Seung [32] presented two iterative update algo-
rithms. The algorithm minimizing the objective function 

1f  is as follows: 

( )
( )

( )
( )

← ←, .
TT

kjik
ik ik kj kjT T

ik kj

a a y y
A XXY

AYY YAA
  (4) 

The algorithm minimizing the objective function 2f  is 
as follows: 
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( )

←

←

∑ ∑
∑

∑ ∑
∑

/
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/
.

ij kj ik kjj k
ik ik

kjj

ij ik ik kji k
kj kj

iki

x y a y
a a

y

x a a y
y y

a

    (5) 

The above two algorithms can be used to find the local 
minima of the objective functions 1f  and 2f  [38].  

Prior knowledge of two distances with respect to the 
probability distribution of the noise is different. Euclidean 
distance minimization can be seen as a maximum likelih-
ood estimator for which the difference is due to additive 
Gaussian noise, whereas Kullback-Leibler divergence can 
be considered as likelihood for Poisson processes [39]. 
The Kullback-Leibler divergence has some deficiencies, 
especially because the gradients needed for optimization 
depend heavily on the scales of factorizing matrices, lead-
ing to many iterations. 

The details of the basic NMF method are summarized 
as listed in Algorithm 1. The iteration procedure is re-
peated until the algorithm converges. 
Algorithm 1:  Basic NMF 
Input: m nR ×∈X   
Output: r nR ×∈Y , m r×∈A R  
1: Initialize 0

m r×∈A R  and 0
r n×∈Y R  as non-negative ma-

trices. 
Set k=0.  
2: repeat 

Update 1k+A  as 

1

T
k

k k T
k k k

+ ←
XYA A

A Y Y  

Update 1k+Y  as 

1
1

+1 1

T
k

k k T
k k k

+
+

+

←
A XY Y

Y A A  

r=r+1 
Until convergence 

Although the basic NMF has been used in the bioin-
formatics field, it has many drawbacks due to the dense 
basis and coefficient matrices. Gene expression data have 
a high-dimensionality and consistently contain some re-
dundant information, i.e., not all features are associated 
with a special biological process or function. To circum-
vent this problem, sparsity must be introduced, which 
means that some elements of the vectors are zero. 
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3 SPARSE NMF 
The previous section presented the basic NMF method, 
but the method has some limitations, for example, the 
nonsparsity, which can be solved by the sparse methods 
presented in this section by using sparse constraints. 

In genomics, gene expression data typically contain 
thousands of genes, but the number of samples is much 
smaller than that of genes. A given disease or biological 
function is usually associated with a few genes. It is a cru-
cial problem in bioinformatics research to select a few 
relevant genes among thousands of genes. It is also cru-
cial for disease diagnosis to identify meaningful proteo-
mics features from the large amount of gene expression 
data [40]. 

Several variants of NMF have recently been presented 
to improve the performance of NMF [41-43]. Sparse con-
straints have been incorporated into NMF to obtain 
sparse solutions [8, 44-46]. Other authors have also noted 
that non-negative constraints alone cannot guarantee a 
sparse representation of the original data, and further, 
that the degree of sparseness cannot be controlled [24]. 
Therefore, various investigations have been conducted to 
incorporate sparse constraints into NMF. 

Recently sparse regularization in dimensionality re-
duction has been widely investigated and applied into 
feature selection studies [18]. In the following section, we 
summarize the sparse constraints of NMF algorithms. 
Given an ×m n  matrix M , 

=→ →
= = ∑ 10 0 0

lim lim ,
pp m

iipp p
mM M  (6) 

when → 0p , the function is denoted as the 0L -norm of 
matrix M .  

= =

= ∑∑ ,1
1 1

m n

j i
i j

mM  (7) 

is denoted as the 1L -norm of matrix M . It denotes the 
sum of the absolute values of elements in the matrix M . 
The 1L -norm was first introduced as LASSO in [47]. 

= = =
= =∑ ∑ ∑2

1 1 12,1 2

m n m i
iji j i

M m m  (8) 

is denoted as the 2,1L -norm of matrix M . First, we com-
pute the 2L -norm of rows im , and then compute the 1L -
norm of vector = 1 2

2 2 2
( ) ( , ,..., )mb M m m m . The 2,1L -

norm of a matrix was first introduced in [48] as rotational 
invariant 1L -norm and used for multi-task learning [49, 
50] and tensor factorization. 

The 0L -norm function is a non-convex, non-smooth, 
discontinuity and global non-differentiable function. The 

1L -norm function is a convex, non-smooth and global 
non-differentiable function. The 2,1L -norm function is a 
convex, smooth and global non-differentiable function 
[51]. 

3.1 0L -norm NMF 
0L -norm is the most convenient and intuitive sparseness 

constraint, which means the number of non-zero elements 
of the vector or matrix. However, there are two reasons 

that can justify an 0L -constrained sparse version of NMF. 
First, the 0L -norm constraint method, although approx-
imate, is useful, because we are able to constrain the basis 
or coefficient vectors of NMF to acquire the exact desired 
number of nonzero elements. Second, the joint optimiza-
tion of Y  and A  is a non-convex problem per se, which 
means that all NMF methods proposed to date converge 
to only a local minimum. The sparse representation me-
thod with 0L -norm minimization can obtain the funda-
mental sparse solution of Y [51, 52]. Peharz et al. pre-
sented an NMF method with 0L -constraints on the col-
umns of A and Y , respectively [53]. 

The sparse coding problem can be defined as minimi-
zation of − ≤

2

0,    . .  ( )x y s t L y KA , where 0(.)L  denotes 
the 0L -norm, i.e., the number of nonzero entries and K  
denotes the maximal allowed number of non-zero entries 
in y . For all columns of X , the following matrix form 
can be extended  [52]: 

− ≤
2

0,
min ,    . .  ( ) .

F
s t L K

A Y
X AY Y  (9) 

It is well-known that the optimal solution for the 
sparse coding problem is NP-hard [54], where the chal-
lenge is to identify the optimal automated data assign-
ment, i.e., the locations of the non-zero entries in Y . 
Many approximate sparse coding approaches have been 
proposed (see, e.g., [55-57]), where one of the most well-
known comprehensive algorithms is orthogonal matching 
pursuit (OMP), as described in [58]. 

3.2 1L -norm NMF 
From the above analysis, the 0L -norm constraint makes 
this objective function difficult to optimize, so it is ap-
proximated using  1L -norm, which has been a popular 
strategy in prior studies [59]. 

Since real gene expression data often contain noise, 
Shen et al. proposed a Robust NMF method [46] that was 
able to simultaneously learn the basis and coefficient ma-
trices and to estimate the positions and values of noise [60, 
61]. 

A robust method of NMF with the 1L -norm constraint 
can explicitly model the partial corruption, which can be 
treated as large additive noises. Let ×∈ m nRX  denote the 
non-negative observation matrix with corrupted data, 
while each column of X  is a data sample. Let ×∈ˆ m nRX  
denote the clean data without noise. Then, = +ˆX X E , 
where ×∈ m nRE  is the matrix with large additive noise. 
Moreover, the partial noise is concerned, where partial 
indicates that the distribution of noise is sparse. Thus, 
only a small portion of entries for the noise matrix are 
nonzero. The clean data X̂  are approximated by 

× ×∈ ∈( ,  )m r r nR RAY A Y  as in the basic NMF, and thus 
≈ +X AY E  [46]. 
Introducing the 1L -norm into the objective function, it 

can be written as  = +   ∑
22

. 1jjF
O λX - AY - E E , where 

the 1L -norm penalty is used for sparseness, which has 
been confirmed to be effective and computationally con-
venient [8, 46, 62, 63]. 

In addition, Hoyer proposed an efficient algorithm to 
minimize the objective − + ∑2

ijF ij
λX AY Y  [58], which 
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penalized the coefficients matrix Y  by using the 1L -
norm constraint. Furthermore, Hoyer [44] defined a 
sparseness function of a factor vector via the 1L -norm 
and presented an NMF method, which constrained the 
columns of A  or Y  to given sparse values. Based on the 
same objective, Eggert and Koerner [64] proposed an al-
ternative update rule that implicitly normalized the col-
umns of Y  to the unit length [52]. 

3.3 2,1L -norm NMF 
It is well known that gene expression data contain noise 
and outliers similar to other high-dimensional data. In 
contrast, in the basic NMF method, the error for each data 
point enters the objective function as the squared residual 
error. Thus, a few outliers with large errors easily domi-
nate the objection function. As a result, Kong et al. [65] 
proposed a robust NMF by using 2,1L -norm to diminish 
the impact of the outliers [66, 67]. The optimization prob-
lem can be written as follows: 

− ≥ ≥
2,1,

min    . .  0, 0.s t
A Y

X AY A Y  (10) 

The objective function of robust NMF can be rewritten 
as follows: 

= = =
− = − = −∑ ∑ ∑2

1 1 12,1
( ) .n m n

ij j jj i j
X AY X AY x Ay  (11) 

In this robust formulation, the error for each data point 
is −j jx Ay , which is not squared. Thus, the errors of the 
outlies and noise do not dominate the objective function 
because they are not squared [65]. The impact of the out-
liers and noise of the data can then be reduced. 

The update rules of the robust NMF method with 2,1L -
norm are as follows: 

← ←
( )( )

, ,
( ) ( )

TT
kjik

ik ik kj kjT T
ik kj

a a y y
A XDXDY

AYDY YAA D
 (12) 

where D  is a diagonal matrix with the elements given by 

=
= − = −∑ 2

1
1 / ( ) 1 / .m

jj ij j ji
D X AY x Ay  (13) 

The computational algorithm for robust NMF is unex-
pectedly simple. It has almost the same computational 
cost as basic NMF. The convergence proof of the algo-
rithm is provided in [65]. 

Motivated by the previous studies on the norm-based 
NMF algorithms, the 2L -norm-based loss function is sen-
sitive to outliers. Thus, Nie et al. [18] proposed an effi-
cient and robust feature selection method to employ a 
joint 2,1L -norm minimization for both the loss function 
and regularization. This method has been adopted in 
gene expression data to remove outliers, and an 2,1L -
norm regularization is applied to select features across all 
data points with joint sparsity, i.e., each feature (gene ex-
pression in mass spectrometry) either has small scores for 
all data points or large scores over all data points [18, 68]. 

3.4 The Versatile Sparse NMF 
According to the above analysis of sparse constraints, addi-

tional constraints can be added to the basic NMF formula-
tion. By and large, regularized NMF can be written as the 
following problem [69]: 

=

=

= −

 
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s t

if t

A Y
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  (14) 

In this optimization problem, the parameters ≥1 0α  and 
≥2 0α control the sparsity and smoothness of the basis 

vectors, respectively. The parameters ≥1 0λ  and ≥2 0λ  
control the sparsity and smoothness of the coefficient vec-
tors, respectively. The parameters 1t  and 2t  are Boolean 
variables (0: false, 1: true) that indicate whether non-
negativity should or should not be enforced on A  and 
Y , respectively [70]. This variant of NMF is called Versa-
tile Sparse non-negative Matrix Factorization (VSMF). 

From Subsections 3.1 and 3.2, we can see that the 1L -
norm cannot make the correlated variables non-zero si-
multaneously in the induced sparse result, which may 
explain the ability of 1L -norm to produce a sparse but 
non-smooth result. While it is known that 2L -norm is able 
to obtain a smooth but not sparse result, another benefit 
of 2L -norm is that the scale of each vector can be re-
stricted. This feature can avoid the scale interchange be-
tween the basis and coefficient matrices [70]. The advan-
tage of VSMF is that both 1L -norm and 2L -norm can be 
used on both basis and coefficient matrices. Another ad-
vantage of VSMF is that the non-negativity constraint can 
be switched off/on for either basis or coefficient matrices. 
In some situations, non-negativity is also needed for the 
coefficient matrix for better performance and interpreta-
tion [70]. 

The basic NMF, semi-NMF, and sparse-NMF are clear-
ly special cases of VSMF. If 1 2 1 2= = = =0α α λ λ  and = =1 2t 1t , 
VSMF is degraded to the basic NMF, which is proposed 
in [31]. If =1 2= 0α λ , ≠2 1= 0α λ  and = =1 2t 1t , then VSMF 
is equivalent to the sparse-NMF proposed in [8]. When 

1α  is set to zero, VSMF can be kernelized [71]. If 
1 2 1 2= = = =0α α λ λ  and =1t 0 , =2 1t , then VSMF becomes 

semi-NMF as proposed in [72]. 
Optimization of VSMF is non-convex, as described for 

most NMF models. The most popular scheme to optimize 
the model is the block-coordinate descent method [73], 
which is basically described as follows: in each iteration, 
A  and Y  are updated iteratively and alternately, that is, 
A  is updated while keeping Y  fixed, and vice versa. 
Based on this scheme, the multiplicative update rules for 
VSMF are as follows. 

Multiplicative Update Rules for VSMF 
If both A  and Y  are non-negative, we can equivalent-

ly rewrite ( , )f A Y in Eq. (14) to 
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− + +

+ +

2 2
1 1

2
1 2

1 Tr( ) Tr( )
2 2

Tr( ) Tr( ),
2

T T
F

T T

α
α

λ
λ

X AY A A E A

Y Y E Y
    (15) 

where ×∈1 {1}m rE  and ×∈2 {1}r nE . Fixing A  and updating 
Y , the problem in Eq.(15) can hence be expressed as 

= − + +

≥

2 2
1 2

1min ( ) Tr( ) Tr( )
2 2

. . 0.

T T
F

λ
f λ

s t
Y

Y X AY Y Y E Y

Y
     (16) 

Similarly, fixing Y  and updating A , the problem in 
Eq.(15) can be expressed as 

= − + +

≥

2 2
1 1

1min ( ) Tr( ) Tr( )
2 2

. . 0.

T T
F

α
f α

s t
A

A X AY A A E A

A
     (17) 

In the case of = =1 2t 1t , the multiplicative update rules 
for the VSMF model are as follows: 

=
+ +

=
+ +

2 1

2 1

* ,

* .

T

T

T

T

α α

λ λ

XYA A
AYY A

A XY Y
A AY Y

        (18) 

The VSMF model is a unified model of many variants 
of NMF, so we can simultaneously address the robustness, 
sparsity and non-negativity of gene expression data by 
using the VSMF. 

4 GRAPH REGULARIZED NMF 
NMF methods have shown numerous advantages for the 
identification of differentially expressed gene and cluster-
ing samples with the above analysis of sparsity, which 
was analyzed in the previous sections, but they fail to 
discover the intrinsic geometric and discriminating struc-
ture of the data space, which is essentially useful for gene 
expression analysis, especially for gene selection and tu-
mor clustering. Thus, the data are usually sampled from a 
low dimension manifold embedded in the high dimen-
sion [38, 74, 75]. Thus, there is considerable space for im-
proving the performance of NMF, which has received 
numerous attention due to the geometric perspective [76]. 
These problems are solved by the methods presented in 
this section. 

Various researchers [3, 77, 78] have considered the case 
in which data were drawn from sampling a probability 
distribution with support on or near to a sub-manifold in 
ambient space [38]. For example, the methods in [62, 79] 
were proposed to preserve the local structure of the low 
dimensional manifold. To address the outliers, RSNMF 
(Robust Sparse Non-negative Matrix Factorization) was 
proposed [80], which was based on an 1L -norm objective 
function. An outlier list was maintained in NMF for more 
robust performance [81]. To detect the underlying mani-
fold structure, many manifold learning methods were 
proposed to address this case, such as LLE [3], ISOMAP 
[77], and Laplacian Eigenmap [82]. 

4 .1 GNMF 
Manifold learning is the most popular method to address 

the embedded structure problem, and the basic idea is 
that if two data samples are close to each other in the in-
put space, then they are also close to each other in the 
embedding space. All the manifold algorithms use the so-
called locally invariant idea [83, 84], i.e., the nearby points 
are likely to have similar embeddings. It is known that 
the gene selection performance can be significantly en-
hanced if the geometric structure in gene expression data 
and the local invariance are considered [38]. Motivated by 
previous progress in matrix factorization and manifold 
learning [79, 85-87], Cai et al. proposed a method called 
Graph regularized Non-negative Matrix Factorization 
(GNMF), which explicitly considered the local invariance. 
To find a part-based representation space in which two 
data points are sufficiently close to each other if they are 
connected in the low dimension graph, a nearest neighbor 
graph encoding the geometrical information in the origi-
nal dataset was constructed. A new objective function of 
matrix factorization was designed by incorporation of the 
graph structure [38, 88]. 

The basic assumption here could be that if two original 
data points ix  and jx  are close in the intrinsic geometry 
of the data distribution, then si and js , the representa-
tions of the two points with respect to the new basis, are 
also close to each other [82]. This assumption is usually 
referred to as the local invariance assumption [86], which 
plays an important role in the development of various 
kinds of algorithms [85, 89, 90]. 

The development of spectral graph theory [91] and 
manifold learning theory [82] has demonstrated that the 
local geometric structure embedded in the high dimen-
sion can be effectively modeled using a nearest neighbor 
graph. A graph with n  vertices is considered, where each 
vertex corresponds to a data point [38]. For each data 
point xi , its k  nearest neighbors can be found, and the 
edges between xi  and its neighbors are positioned. The 

ijw  is used to measure the closeness of two points ix  and 
its neighbor jx  [38]. There are many choices to define the 
weight matrix W  on the graph. 

One method to define the weight matrix can be given 
as follows: 

0-1 weight: = 1ijw , if and only if node i  and j  are 
connected by an edge. This is the simplest weighting me-
thod and is very easy to compute. 

The = 1ijw  is only for measuring the closeness of two 
data points in this method, so we apply the Euclidean 
distance = −

2
( , )i j i jO s s s s  to measure the distance be-

tween the low dimension of two data points. 
The smoothness of the low dimension representation 

can be measured by 

     = =

= −

= −

= −

=

∑
∑ ∑

（

2

,

1 , 1

1
2

Tr( ) Tr( )
Tr ),

n
i j iji j

n nT T
i i ii i j iji i j

T T

T

R s s w

s s d s s w

YDY YWY
YLY

 (19)   

where Tr(·) denotes a trace of matrix, W is a weight ma-
trix of the nearest neighbor graph, and D  is a diagonal 
matrix with column (or row, since W  is symmetric) sum 
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entries of W , 
=

= ∑ 1

n
ii ijj

d w . = −L D W , which is called 
the graph Laplacian matrix [38, 92]. 

GNMF then minimizes the objective function as fol-
lows: 

− + ≥ ≥
2

,
min Tr( ),    . . ,  ,Tλ s t

A Y
X AY YLY Y 0 A 0   (20)  

where the regularization parameter ≥ 0λ  controls the 
smoothness of the new representation [93].  

An Efficient Algorithm of GNMF 
The error function in Eq.(20) can be rewritten as fol-

lows: 

= − − +

= − + +

Tr(( )( ) ) Tr( )
Tr( ) 2Tr( ) Tr( ) Tr( ).

T T

T T T T T T

f λ
λ

X AY X AY Y LY
XX XY A AYY A YLY

 (21) 

The optimization problem in Eq.(21) can be solved by 
using the Lagrangian multipliers ikψ  and φkj  under con-
straints ≥ 0ika  and ≥ 0kjy , respectively [94]. When 

=Ψ [ ]ikψ  and φ=Φ [ ]kj , the Lagrangian function L  is de-
fined as 

= −

+ +

Tr( ) 2Tr( )+Tr( )
+ Tr( ) Tr(Ψ ) Tr(Φ ).

T T T T T

T T T

L
λ

XX XY A AYY A
YLY A Y

 (22) 

Using the KKT conditions [95], we can obtain the up-
date rules which are listed as follows: 

←
( )

,
( )

T
ik

ik ik T
ik

a a
XY

AYY
 (23)  

+
←

+

( )
.

( )

T
kj

kj kj T
kj

λ
y y

λ
A X YW

A AY YD
 (24) 

From the analysis of GNMF, we can see that it has 
more discriminating power than traditional NMF because 
it considers the sub-manifold embedded in ambient space, 
which is essential for tumor clustering and gene selection 
[88]. The results in Section 6 will demonstrate that the 
GNMF can identify more differentilly expressed genes 
than the basic NMF. 

4.2 RMNMF 
Because the GNMF method cannot address the impact of 
outliers and noise in the gene expression data, Cai et al. 
proposed a Robust Manifold Non-negative Matrix Facto-
rization (RMNMF) model in which the mixed-Norm 2,1L -
norm was used to improve the model robustness. This 
model can be applied to practical data mining applica-
tions, such as gene identification and sample clustering. 
Additionally, a manifold regularization term was incor-
porated into the geometrical information existing in the 
high dimension data [74]. The objective function of the 
RMNMF model is given as follows: 

− + >
2,1,

min Tr( ), . . ,  .T Tλ s t
A Y

X AY YLY Y 0 YY = I  (25) 

Here the second term is the additional constraint =TYY I . 
The first purpose is to reduce the computation cost for the 

optimization. Another purpose is to guarantee the uni-
queness of the RMNMF solution. Suppose *A and *Y  are 
the solutions to Eq.(25); then, for any given nonzero con-
stant >c 1 , *cA  and *cY  would provide an identical val-
ue for the first term and a lower value for the second term, 
whether *A  and *Y are local or global optimum solutions 
[74]. While inspired by the sparsity, RMNMF has no 
sparse constraints, making it inefficiency for managing 
the enormous amount of gene expression data. The next 
subsection introduces a method that can simultaneously 
manage the geometric structure, robustness and sparsity.  

4.3 RSGNMF 
In Subsections 4.1 and 4.2, two methods have been shown 
to address outliers and embedded structural problems 
that are essential for the identification of differentially 
expressed genes. Nonetheless, there is still considerable 
space to optimize the NMF algorithms with 2,1L -norm 
and manifold. Yang et al. proposed a Robust NMF via the 
joint Sparse and Graph regularization model (RSGNMF), 
which can simultaneously handle high-dimensional, 
sparse and noisy data. The 2,1L -based loss function term 
can diminish the impact of outliers or noise, and the 2,1L -
norm-based sparse regularization term forces most of the 
rows in Y  to shrink to zero, which implies that the cor-
responding features of these zero rows are not important 
for new representations, and the manifold term preserves 
the local structures embedded in the original data [96, 97]. 

Given a data matrix X , we can obtain the final formu-
lation of the RSGNMF model, which simultaneously takes 
into consideration the robust loss function, sparse regula-
rization and local structures of the data. The formulation 
is written as follows: 

− + + ≥ ≥
2,1 2,1,

min Tr( )   . . 0,  0.Tα β s t
A Y

X AY Y YLY A Y  (26) 

We introduce the solution for RSGNMF model via 
iterative updating algorithm as below, 
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+ +
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where 1D  and 2D  are diagonal matrices with diagonal 
elements given by 

=

=

= − = −

= =

∑

∑

2
1 1

2
2 1

( ) 1 ( ) 1 ,

( ) 1 1 .

n j
jj ij jj

n j
jj ijj

x y

y

D X AY A

D Y
  (28) 

The additional 
，2 1L -norm on both graph and error 

functions has more advantages than on each other sepa-
rately. It combines the robust and sparsity characteristics, 
which can diminish the impact of noise, generate a sparse 
results and discover the intrinsic geometry for the analy-
sis of gene expression data. 

4.4 GDNMF 
Another important issue in identifying differentilly ex-
pressed genes and clustering samples is the discrimina-
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tive power of a method. Although the above methods 
have solved many problems, if the discriminative infor-
mation can be added to the model, then it will be a more 
powerful method for managing the gene expression data. 

Inspired by the success of NMF based on graph regu-
larization [38] and discriminative dictionary learning [98], 
Long et al. proposed a method called Graph regularized 
Discriminative Non-negative Matrix Factorization 
(GDNMF), which explicitly considered the embedded 
structure problem and label information. The method 
encoded the geometric structure of the data in space by 
constructing a k -nearest-neighbor graph and increased 
the discriminative power by considering the label infor-
mation [99, 100]. A matrix decomposition aims to identify 
a part-based representation discriminative space in which 
two data points are sufficiently close to each other if they 
are connected in the original data set graph [101]. 

First, the class indicator matrix ×∈ p nS R  is defined as 
follows: 

 = = == 


 1, if , 1,2, , ,  1,2, , ,
0, otherwise,

j
ij

w i j n i p
S  (29) 

where }{∈ 1,2, ,pjw  denotes the class label of the j -th 
sample jx  and p  is the total number of classes in matrix 
X . 

The optimization problem of the GDNMF model is 

− + + −

≥ ≥ ≥

2 2

,
min Tr( ) ,

. . ,  ,  0,

T
F F
λ β

s t
A Y

X AY YLY S CY

Y 0 A 0 C
 (30) 

where the regularization parameter ≥ 0λ  controls the 
smoothness of the new representation [93], and ≥ 0β  is 
the regularization parameter. L  is called the graph Lap-
lacian matrix, which is defined in Subsection 4.1 [92]. 

×∈ p kC R  is a non-negative matrix and is initialized ran-
domly in this method. 

An Efficient Algorithm for GDNMF 
The optimization scheme to solve this objective func-

tion is based on multiplicative iterative updates of these 
three factor matrices. The error function in Eq.(30) can be 
rewritten as follows: 
= − − +

− −

= − + +

+ − +

Tr(( )( ) ) Tr( )
+ Tr(( ))

Tr( ) 2Tr( ) Tr( ) Tr( )
Tr( ) 2 Tr( ) Tr( ).

T T

T

T T T T T T

T T T T

f λ
β

λ
β β β

X AY X AY Y LY
S CY) (S CY

XX XY A AYY A YLY
S S S CY Y C CY

 (31) 

To solve the constrained optimization problem in 
Eq.(31), the Lagrangian multipliers ikψ , φkj , and Ωpk  are 
introduced under constraints ≥ 0ika , ≥ 0kjy  and ≥Ω 0pk , 
respectively [94]. If we let = [ ]ikψΨ , = φ[ ]kjΦ  and 

= Ω[ ]pkΩ , then the Lagrangian function L  is defined as 
=

+ − +

+ + +

( )-Tr 2Tr( )+Tr( )+ Tr( )
Tr( ) 2 Tr( ) Tr( )

Tr( ) Tr( ) Tr( ).

T T T T T T

T T T T

T T T

L λ
β β β

XX XY A AYY A YLY
S S S CY Y C CY
ΨA ΦY Ω C

  (32) 

Using the KKT conditions [95] = 0ik ikψ a , φ = 0kj kjy  and 
=Ω 0pk pkC , and multiplying the two sides of the deriva-

tives of L  with respect to A , Y  and C  by ika , kjy  and 

Ωpk , respectively, the update rules are obtained as fol-
lows: 
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( )

,
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ik

ik ik T
ik

a a
XY

AYY
 (33)  

+ +
←

+ +

( )
,

( )

T T
kj

kj kj T T
kj

β λ
y y

β λ
C S A X YW

C CY A AY YD
 (34) 

←pk
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.

( )

T
pk

pk T
pk

c c
SY

CYY
 (35) 

In conclusion, from Subsections 4.1, 4.2 and 4.3, we can 
see that combining the 2,1L -norm for both the error func-
tion and the regularization term can simultaneously solve 
the outliers and noise and the sparse problems. Manifold 
regularization can be added to consider the structure em-
bedded in high dimension ambient space and to identify 
the instinct geometric structure that is essential for the 
gene expression analysis. Additionally, in Subsection 4.4, 
incorporating supervised label information into the me-
thods may strengthen the discriminative power of the 
algorithms.  

In summary, if we can apply the 2,1L -norm of the error 
function and/or regularization function, then the robust-
ness and sparsity can be obtained. If we can incorporate 
manifold learning and label information into one method 
to analyze the gene expression data, the method may si-
multaneously address the geometric structure, discrimin-
ative power, robustness and sparsity. This idea will be 
addressed in future.  

5 GENERALIZED NMF 
In this section, in contrast with the above additional con-
straints as penalty terms, some models of generalized 
NMF and their iterative update rules are simply intro-
duced. 

5.1 Semi-NMF 
Conventional NMF restricts every element in the data 
matrix X  to be non-negative. While many candidate data 
in practical applications are not always non-negative, the 
factor features or principal components may also contain 
some negative elements in the factor matrix reflecting the 
phase information [25]. Ding et al. suggested an extended 
version referred to as Semi-NMF [72], which maintained 
some kernel concepts of NMF, where A  was still re-
stricted to being non-negative while placing no restric-
tions on the signs of Y  [102, 103]. 

The formulations are collectively summarized as fol-
lows: 

± ± ±

+ + +

± + ±

≈
≈
≈

PCA: ,
NMF: ,

Semi-NMF: .

X A Y
X A Y
X A Y

 (36) 

Ding et al. employed an alternating iterative approach 
to solve the optimization problem, where the positive and 
negative parts were separated from the mixed-sign matrix. 
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A  is updated using multiplicative rules while holding 
Y  fixed, and vice versa [72]. 

5.2 Orthogonal NMF 
Orthogonal NMF has an orthogonality constraint on ei-
ther factor A  and/or Y [104]. The orthogonality prin-
ciple was first employed by Li et al. [105] to minimize 
redundancy between different bases, and then Ding et al. 
broached the concept of Orthogonal NMF explicitly [106]. 
In the case of non-negativity, orthogonality will naturally 
result in sparseness. Thus, it can be viewed as a special 
case of Sparse NMF. However, there is a notable differ-
ence between  the optimization models [25, 45, 107]. 

In this subsection, we emphasize the orthogonality of 
matrix factors in NMF. The formulation of Orthogonal 
NMF is given as follows: 

≥ >
− =

2

0, 0
min ,    . .  .Ts t

A Y
X AY Y Y I  (37) 

The update rules are 
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Furthermore, it is natural to consider imposing ortho-
gonality on both A  and Y  in NMF simultaneously, so-
called bi-orthogonality, 

> >
− = =

2

0, 0
min ,    . . ,  ,T Ts t

A Y
X AY Y Y I Α A I  (39) 

which nevertheless typically provides poor approxima-
tion performance [108-110]. 

6 RESULTS FOR THE TUMOR DATASET 
To verify the performance of the algorithms mentioned 
above, we will perform experiments based on some tu-
mor datasets. 

Inspired by a previous study of the NMF algorithms 
and their various extensions, NMF algorithms have ad-
vantages in identifying differentially expressed genes and 
clustering samples [5, 111]. To evaluate the performance 
of the above various NMF extended algorithms, in this 
section, we will analyze gene expression data for identify-
ing differentially expressed genes and clustering samples.  
Furthermore, we will also briefly apply the methods to 
the TCGA dataset. Several experiments are performed to 
demonstrate the performance of these algorithms.  

6.1 Gene Identification Results with the Different 
Methods 

In this subsection, the gene identification results of the 
above algorithms are introduced. The identification of 
differentially expressed genes based on these NMF me-
thods is described as follows: 

1) Gain the data matrix X  according to the gene ex-
pression data. 

2) Obtain the basis matrix A  by using NMF-based me-
thods. 

3) Identify the differentially expressed genes via basis 
matrix A . 

4) Check the identified genes using the Gene Ontology 
(GO) tool. 

The details of how to identify genes from A  are then 
shown as follows: 

The basis matrix A  can be described as follows: 
 
 
 =
 
 
  





   



11 12 1

21 22 2

1 2

.

r

r

m m mr

a a a
a a a

a a a

A  (40) 

 
The non-zero entries in the basis matrix A  may reflect 

the differential expression of genes. Here, differentially 
expressed genes are identified by considering the ampli-
tude of the entries in A . Therefore, the absolute values of 
entries in the basis matrix A  are firstly calculated, and 
then a vector Â  can be obtained by summing the basis 
matrix A  by rows. Mathematically, the above processes 
can be formulated as follows: 

= =
 =
 ∑ ∑11 1

ˆ , , .
Tr r

j mjj j
a aA  (41) 

 
Finally, the evaluating vector A  is obtained by sorting 

Â  in descending order. Without loss of generality, we 
suppose that the first k  ( ≤k m ) entries in Â  are non-
zero, that is 

−

 
 =
  

 



1 , , , 0, , 0 .

T

k

m k

a aA  (42) 

Without loss of generality, the larger the element is in 
A , the more differential the gene. Consequently, the 
genes associated with the first num  ( ≤num k ) largest 
entries in A  are selected as differentially expressed genes. 

A tumor is a swollen or distended part of the most 
harmful diseases, and tens of thousands of people die 
every year because of this condition. Therefore, it is an 
important challenge for scientists to identify the the re-
lated virulence genes among numerous gene expression 
data. In our experiment, we apply the DLBCL (Diffuse 
Large B-Cell Lymphoma) dataset, the most common lym-
phoid malignancy in adults, with a curable rate of less 
than 50% of patients. Shipp et al. 
(www.genome.wi.edu/MPR/lymphoma) applied a su-
pervised learning method to an expression profiling data-
set of 7139 genes in 58 tumor specimens, and identified 13 
genes that were highly predictive of outcomes [112, 113]. 

For a fair comparison, 100 genes are identified as the 
differentially expressed genes in the tumor datasets by 
using these NMF-based methods. The GO enrichment 
[114] of functional annotation of the identified genes by 
these methods is detected by ToppFun, which is publicly 
available at [http://toppgene.cchmc.org/enrichment.jsp]. 

Table 1 lists the ten closely related terms to the DLBCL, 
with P-values corresponding to the different methods. 
The annotation column represents the total number of 
genes related to the GO terms in the web tool. The input 
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columns represent the numbers of the differentially ex-
pressed genes related to the GO terms, which were ex-
tracted using these methods.     

The results demonstrate that these algorithms per-
formed more efficiently for identifying genes. For exam-
ple, for the term of “structural constituent of ribo-
some“(GO: 0003735), the basic NMF can extract 6 genes 
while GDNMF can extract 47 genes that correspond to the 
term. The genes selected by the methods were all verified 
and have relevance to the DLBCL tumor. Accordingly, 
the more genes identified by the method, the better the 
method will perform. Furthermore, the gene numbers 
have a negative correlation with the P-value. Most of the 
extended NMF algorithms can identify more differential 
genes (with lower P-values) than the basic NMF algo-
rithm, which demonstrates that the improved NMF algo-
rithms are efficient for identifying genes. 

6.2 The Clustering Results of Different Methods 
To evaluate the performance of NMF and its extended 
algorithms in clustering samples, in this subsection, we 
apply the widely used tumor sample leukemia dataset in 
the experiments. Acute myelogenous leukemia (AML) 
and acute lymphoblastic leukemia (ALL) can be easily 
distinguished. ALL can be further divided into T and B 
subtypes. The distinction between AML and ALL, as well 
as the division of ALL into the T and B cell subtypes, is 
known. The dataset contains 5000 genes in 38 samples, 
and consists of 19 cases of B cell ALL (ALL_B), 8 cases of 
T cell ALL (ALL_T), and 11 cases of AML [24], as listed in 
Table 2. Table 3 lists the clustering results of different 

NMF methods with the clustering number in = 2k  and 
= 3k . The incorrect clustering samples are underlined, in 

italics and in bold. Table 4 lists the clustering accuracy of 
these methods. 

From Table 3 and Table 4, we can find that NMFL21 
has the highest clustering accuracy of 97.38% compared 
with the other algorithms, and except for the RSGNMF 
algorithm, other methods have the same clustering accu-
racy of 92.10% when the clustering number = 2k . For the 
clustering number = 3k , the RSGNMF has the same clus-
tering accuracy as orth-NMF, which is lower than the  
other methods. Since GNMF considers the geometric in-
formation, it has the highest clustering accuracy of 94.83% 
compared with the other methods. Based on the results, 
we can conclude that NMF methods with manifold learn-
ing can achieve a higher clustering accuracy because they 
consider the geometric information for the original data 
distribution. 

6.3 Analysis of the TCGA Dataset by Different 
Methods 

The TCGA project plans to profile genomic changes in 20 
different cancer types and  to date, has published results 
for different cancer types [115, 116]. This project also pro-
vides clinical information about the metastatic status of 
individual patients via clinical stage information. The 
breadth of the TCGA genomic data sets provides a 
unique opportunity to consider different categories of 
genetic aberrations at individual gene resolution that  
have not been considered in other genomic studies [117-
119]. 

 In this subsection, the ColoRectal Cancer (CRC) data 
in the TCGA dataset are analyzed using NMF and its var-
ious extended methods. CRC is one of the leading causes  

TABLE 1 
THE TEN CLOSELY RELATED TERMS ON DLBCL TUMOR DATASET 

  
NMF NMFL21 GNMF RMNMF RSGNMF GDNMF orth-NMF 

 
ID name p-Value Input p-Value Input p-Value Input p-Value Input p-Value Input p-Value Input p-Value Input Annotation 

12456497-Table4 Human Leukemia Durig03 88genes 1.37E-10 6 2.53E-10 7 2.56E-102 45 2.33E-102 46 2.79E-101 45 4.12E-107 47 2.82E-74 36 81 

M11197 Housekeeping genes identified as 

expressed across 19 normal tissues. 

3.93E-32 30 7.12E-34 29 1.13E-95 57 1.26E-97 57 2.88E-99 59 4.58E-101 60 3.90E-78 51 389 

GO:0022626 cytosolic ribosome 1.52E-07 7 1.58E-05 5 5.60E-91 44 5.60E-91 44 5.51E-90 44 8.44E-96 46 4.24E-63 34 96 

GO:0006415 translational termination 9.32E-08 8 8.70E-10 11 7.48E-91 44 7.28E-92 46 7.37E-90 44 1.13E-95 46 1.13E-62 34 95 

GO:0006414 translational elongation 8.28E-08 8 2.26E-11 11 1.04E-88 46 1.15E-87 48 1.25E-87 46 3.94E-93 48 7.30E-62 36 130 

GO:0044391 ribosomal subunit 2.87E-06 7 1.25E-04 5 5.43E-86 46 4.28E-85 46 6.53E-85 46 2.92E-90 48 3.38E-60 36 148 

GO:0003735 structural constituent of ribosome 4.13E-06 7 1.84E-04 5 1.51E-81 45 2.63E-80 46 1.63E-80 45 1.06E-85 47 1.47E-56 35 156 

GO:0005198 structural molecule activity 1.39E-05 12 8.82E-06 11 1.49E-55 47 1.49E-55 47 1.89E-54 47 2.78E-58 49 4.90E-42 40 641 

16872506-

SuppTable1 

Human Leukemia Yukinawa06 

2000genes 

2.92E-15 30 1.48E-20 32 1.74E-42 47 1.36E-45 50 1.25E-44 49 1.05E-45 50 2.26E-36 44 1505 

GO:0003723 RNA binding 2.24E-04 17 1.16E-05 17 6.92E-42 50 2.63E-40 50 1.16E-40 50 3.08E-42 51 2.77E-29 42 1568 

Note: NMF: Basic NMF; NMFL21: 2,1L -norm NMF; GNMF: Graph regularized NMF; RMNMF: Robust Manifold NMF; RSGNMF: Robust NMF via joint Sparse and 

Graph regularized model; GDNMF: Graph regularized Discriminant NMF; orth-NMF: Orthogonal NMF. It lists the ten closely related to the DLBCL terms of P-values corres-

ponding to different methods. The input columns represent the numbers of gene extracted by these methods. The annotation column represents the total number of genes 

included in the GO terms.  

TABLE 2 
THE SAMPLE NUMBERS OF LEUKEMIA DATASET 

Types ALL_B ALL_T AML 

Number 19 8 11 
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of cancer deaths worldwide, with mortality primarily 
resulting from metastatic disease [120]. Identifying the 
genetic and genomic basis of CRC has significant clinical 
implications. TCGA is the most comprehensive CRC ge-
nomic survey conducted to date [121], and its project re-

lies on a combination of next generation sequencing and 
microarray genomic platforms to characterize different 
CRC genetic aberration features and individual affected 
genes. Genomic data were obtained from the Broad Fire-
hose (http://gdac.broadinstitute.org) which is one of the 

TABLE 3 
THE CLUSTERING RESULTS OF DIFFERENT METHODS ON LEUKEMIA DATASET 

Samples 
NMF NMFL21 RMNMF RSGNMF GDNMF GNMF orth-NMF K-means 

k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3 

ALL_19769_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 
ALL_23953_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 
ALL_28373_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_9335_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_9692_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 

ALL_14749_B-cell 2 2 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_17281_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 
ALL_19183_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_20414_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_21302_B-cell 1 3 1 2 1 2 1 2 1 2 1 1 2 3 2 3 

ALL_549_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_17929_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_20185_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_11103_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 3 
ALL_18239_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_5982_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_7092_B-cell 2 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 
ALL_R11_B-cell 1 1 1 1 1 2 1 1 1 1 2 3 2 3 1 3 
ALL_R23_B-cell 1 1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 

ALL_16415_T-cell 1 3 1 2 1 2 1 2 1 2 1 1 1 1 2 1 
ALL_19881_T-cell 1 3 1 2 1 2 1 2 1 2 1 1 1 1 2 1 
ALL_9186_T-cell 1 3 1 2 1 2 1 2 1 2 1 1 1 1 2 1 
ALL_9723_T-cell 1 3 1 2 1 2 1 2 1 2 1 1 1 1 2 1 

ALL_17269_T-cell 1 3 1 2 1 2 1 2 1 2 1 1 1 1 2 1 
ALL_14402_T-cell 1 3 1 2 2 2 1 2 1 2 1 1 1 1 2 1 
ALL_17638_T-cell 1 3 2 2 1 3 1 2 1 2 2 2 1 1 2 1 
ALL_22474_T-cell 1 3 1 2 1 2 1 2 1 2 1 1 1 1 2 1 

AML_12 2 2 1 2 1 3 2 3 1 2 2 2 2 2 2 3 
AML_13 1 3 1 3 1 3 1 3 1 3 1 3 2 2 1 3 

AML_14 2 2 2 3 2 2 2 1 2 3 2 2 2 2 2 2 

AML_16 2 2 2 3 2 3 2 2 2 3 2 2 2 2 2 2 

AML_20 2 2 2 3 2 3 1 2 2 3 2 2 2 2 2 3 

AML_1 2 2 2 2 2 3 1 3 2 3 2 2 2 2 2 3 

AML_2 2 2 2 2 2 3 2 3 2 3 2 2 2 2 2 3 

AML_3 2 2 2 3 2 3 2 3 2 3 2 2 2 2 2 2 

AML_5 2 3 2 3 2 3 1 2 1 2 2 2 1 1 2 3 

AML_6 2 1 2 3 2 3 1 2 2 3 2 2 2 2 2 3 

AML_7 2 2 2 3 2 3 2 3 2 3 2 2 2 2 2 2 
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Genome Data Analyses (GDACs) for TCGA project. In 
this subsection, we conduct an analysis of 197 samples 
with 5188 genomic features from 1325 genes which inte-
grated exome sequences, DNA copy numbers, methyla-
tion and mRNA expression data [122].  

NMF-series methods are used to identify differentially 
expressed genes in CRC. We select 200 genes for each 
method to analyze overlap among the sets of differential 
genes identified by using different methods.  

Figure 2 shows the overlap among the sets of differen-
tially expressed genes. From this figure, we note that only 
2 genes identified by RSGNMF are not shared with other 
methods. In contrast, GDNMF and RMNMF identify a 
fair amount of differentially expressed genes that are not 
shared with other methods (GDNMF and RMNMF have 
100 and 99 genes, respectively). Five genes are shared by 
all the five methods. Eventually, the five genes shared by 
the five methods are input into the GO tool and demon-
strated to play an essential role in CRC development. The 
details are listed in Table 5. The first gene overlapped 
with these methods is FABP1 which is commonly found 
in liver patients. While many studies have demonstrated 
that approximately 50% of patients with CRC have liver 

metastases (CLM), patients with respected CRC and CLM 
can experience a 5-year survival of up to 50–60%. In con-
clusion, identification of the characteristic genes corres-
ponding to the disease plays an important role in therapy 
and remains the best prognostic indicator. 

7 CONCLUSION AND FUTURE WORKS  
The basic NMF method has been widely used in data 
mining and machine learning fields, with its characteristic 
in data representation. In gene expression data in particu-
lar, we can interpret non-zero entries in the basis matrix  
as differentially expressed genes that capture gene ex-
pression patterns specific to different groups of samples. 
While the characteristic genes are identified, the problems 
of noisy and redundant information must be addressed. 
In sample clustering, the label information and geometric 
structure in the original data must also be considered. 
Thus, many researchers have enforced desirable proper-
ties on factor matrices, such as sparsity and smoothness. 
The sparse constraint results facilitate the interpretation 
to an even greater extent. The graph NMF methods con-
sider the geometric structure and the label information in 
the original dataset. Thus, this paper provides a compre-
hensive review of NMF methods for the identification of 
differentially expressed genes and clustering samples. 
The real gene expression data and TCGA data are also 
examined to verify the performance of NMF algorithms. 

Although many modified NMF methods have been 
proposed, there is still considerable space for improving 
the performance of NMF. For example, the following un-
solved issues are very important: (1) most existing me-
thods only provide local optimal solutions, so it is essen-
tial to introduce some global optimization techniques; (2) 
the scalability of NMF algorithms for large scale datasets 
should be improved; (3) a deep understanding of the clus-
tering capability of NMF should be provided together 
with the theoretical results; (4) the applicability of NMF is 
not just limited to biological problems but encompasses 
diverse areas. 

Furthermore, with the development of biological data, 
the TCGA Data Portal provides a platform for researchers 
to search, download, and analyze data sets generated by 
the TCGA project. The data contain clinical information, 
genomic characterization data, and high level sequence 
analysis of tumor genomes. Consequently, NMF algo-
rithms can be applied for a further analysis of tumors.  

TABLE 4 
THE ACCURACY OF CLUSTERING ON LEUKEMIA DATASET 

Number of 
types samples NMF NMFL21 RMNMF RSGNMF GDNMF GNMF orth-NMF K-means 
K=2 38 92.10% 97.38% 92.10% 86.84% 92.10% 92.10% 92.10% 94.70% 
K=3 38 86.84% 89.47% 92.10% 84.21% 92.10% 94.83% 84.21% 81.50% 

 

  

Fig. 2. Overlap among the set of genes identified by the different NMF 
methods. Only 2 genes identified by RSGNMF are not shared with 
other methods. In contrast, GDNMF and RMNMF identify a fair amount 
of differential genes that are not share with other methods (GDNMF 
and RMNMF have 100 and 99 genes, respectively). There are 5 genes 
shared by all the five methods.  
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